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CHAPTER 4.  CHEMOMETRICS FOR MASS SPECTROMETRY


Chapter 4 


Chemometrics for Mass 
Spectrometry

4.1 Concentration Information from Mass Spectra

A calibrated mass spectrometer can be used to provide quantitative concentration information for multiple analytes simultaneously.  The calibration is a construction of a relationship between a concentration of an analyte and its signal intensity.  Once established, the relationship then allows the signal intensity to be interpreted into concentration information.

To establish this relationship linear regression methods are applied to chemical data, this topic forms a distinct part of the field of chemometrics.  Chemometric algorithms can enable development of ‘intelligent’ analytical systems, highlighting strange results and instrument problems.  [
, 
]  For successful concentration determinations consideration must be given to experimental design, data collection, signal processing and method evaluation as well as the calibration itself.  Each of these stages is in themselves complex and require particular analytical rigor. 

Chemometric toolbox algorithms can be applied to chemical data as black boxes, with the user having little knowledge of workings of the algorithm applied.  In this chapter an introduction of regression methods is given absent of any chemical meanings or significance to avoid confusion in what each technique is trying to achieve.  These techniques are then taken and applied to mass spectral data. 

Mathematical methods that give quantitative and qualitative interpretation of mass spectra are seen as early as 1965 [
].  At the time less spectral data were incorporated in the calibrations and methods utilized as few as 15 to 20 m/z positions.  [
] In 1977 the use of factor analysis gave qualitative and quantitative information from mass spectral mixtures [
, 
, 
].  In 1979 a library matching method was described [
], a sample spectrum could be matched to one of 17000 library spectra.  Quantitative approaches arose through algorithms attempting to fit several spectra to the one sample spectrum and computing their concentration coefficients using least squares and other techniques. These methods rely on the mass spectrometer system behaving linearly.  [
]

Least squares (LS) minimises the sum of the square of the residuals whereas others minimises the sum of the absolute values of the residuals. Some methods can be more robust by simply using the median instead of the mean when modelling.  [
, 
] 

These previous aims were similar, identification and quantifying of components, these were then applied off-line and now can be applied online due to increase in computational power, and this additionally allows full spectra to be used, without the user manually selecting smaller numbers of mass points.  For a regression method to be widely employed, it needs to be generic and applicable to all measurement situations. 

4.2 Matrix algebra

4.2.1 Notation and Fundamentals

Previous matrix notation is used [
,  
, 6], where bold uppercase letters refer to matrices, (Y), bold lower case signify column vectors y1.  Plain lower case letters are scalars representing single elements of vectors or matrices.  

The identity matrix (I) (Equation 4‑1) is composed of ones along the diagonal, zeros elsewhere.  X+ is the pseudoinverse of X. Equation 4‑2 and Equation 4‑3 show the norm of vectors and matrices, ||r|| is the norm of vector r and ||R|| is the norm of matrix R.  The pseudoinverse is given by Equation 4‑3.

Equation 4‑1 
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Equation 4‑2
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Equation 4‑3
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Equation 4‑4
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Covariance 
Covariance parameters indicate the extent to which two variables co-vary.  It can be considered as a measure of interdependence between two variables.  Covariance is denoted as cov(x,y). 
Equation 4‑5
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Equation 4‑6
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Using a data matrix X with samples being the rows of X The covariance of any component Xi (the ith row of matrix X) with itself is that component’s variance and if the data matrix is uniformly distributed and mean centred the relationships can be written as:
Equation 4‑7
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Correlation a measure of the strength of a linear relationship between two random variables also known as Pearson product- moment correlation coefficient is defined as

Equation 4‑8
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Linear Regression Methods

4.2.2 Univariate Regression Using Least Squares


Given a vector of inputs x=(x1,x2,…..xp) we can predict the output Y via the linear model (Equation 4‑9) where 
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 is the intercept term. [
]
Equation 4‑9
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It is often convenient to include the constant variable 1 in X, include
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in the vector of coefficients 
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 and then write the linear model in vector form as an inner product.
Equation 4‑10 
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XT denotes vector or matrix transpose (X is a column vector) here we are modeling a single output, so Y is a scalar.  The linear model is fitted to a set of training data by a popular least squares method. Such that values of β are chosen to minimize the residual sum of squares.

Equation 4‑11
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RSS(β) is a quadratic function of the parameters, and hence its minimum always exists, but may not be unique. The solution characterised in matrix notation is

Equation 4‑12
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Differentiating with respect to β we get the normal equations

Equation 4‑13
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Provided XTX is nonsingular, then the unique solution is given by;

Equation 4‑14


[image: image17.wmf]y

X

X)

(X

T

1

T

-

=

b

ˆ


The fitted value at the ith input xi is 
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 A linear model with p>1 inputs is referred to as the multivariate linear regression model. This can be understood by extending the univariate model (with no intercept)

Equation 4‑15
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The least squares estimate and residuals are

Equation 4‑16
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Equation 4‑17
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in vector notation y =
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Equation 4‑18
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The inner product between x and y. Then we can write

Equation 4‑19
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Equation 4‑20
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Given that the columns of X are orthogonal such that 
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for all j ≠ k. It is then easy to check that the multiple least squares estimates 
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 the univariate estimates.  Given that the inputs are orthogonal they have no effect on each other’s parameters in the model. 

4.2.3 Multivariate Regression using Least Squares

Now having multiple outputs Y1,….Yk, that need to be predicted from inputs X0,….Xp, a linear model can be assumed for each output. Least squares in matrix notation can be written as;

Equation 4‑21
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Here Y is an N×K response matrix, with ik entry yik, X is the N×(p+1) input matrix. B is the (p+1)×K matrix of parameters and E is the NxK matrix of errors. Equation 4‑12 can be re-written for a multivariate scenario;

Equation 4‑22 
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The least squares estimates have the same form as the univariate approach

Equation 4‑23
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Hence the coefficients for the kth outcome are just the least squares estimates as in the univariate approach. Multiple outputs do not affect one another’s least squares estimates.

Further methods to determine regression coefficients

With least square methods problems can arise in determining regression coefficients when there is correlation between variables; when these variables are so highly correlated it is impossible to obtain reliable estimates of the individual regression coefficients.
Other methods are available for predicting the regression coefficients. Some of these methods realize that within the original matrix X there is redundant information (e.g. PCA/PLS),. Removing redundant information may improve the regression factors obtained. Methods to be considered are principal component regression (PCR) and partial least squares (PLS).  Prior to looking at these methods, factor spaces and methods to derive factors are to be explained.
Constituents of matrix X are a set of real numbers (
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).  For a given matrix X of dimensions (n×d) when plotted in a d-dimensional space, the data points will lie in a subspace
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. In some situations d is higher than needed, PLS and PCR methods act to reduce the dimensionality of the data. The data can be reduced to an n×b matrix Xnew with b<d and d-b reduction in dimensions.  This has to be done without loss in data representation. This can be visualized by data on a plane in 3D space can be represented in a 2D space, thus requiring only two coordinates and not three.

Principal component analysis can be used to tackle singularity or ill-conditioning of the covariance matrix. It employs a linear transform of a feature 
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with the assumption the data matrix is mean-centered and has zero-mean. The principal idea is to choose an orthogonal matrix M such that the new covariance matrix 
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 is diagonal. If we define M (a matrix with columns of the eigenvectors of ∑X ) and Λ (a diagonal matrix with the corresponding eigenvalues λi ) we obtain

Equation 4‑24
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Geometrically, the d eigenvectors represent the principal axes of the hyperellipsoidal data distribution. By keeping the b components with the largest eigenvalues, we ignore the directions with the smallest data variance. The variance along the ith component is equal to λi.  Thus by substituting M with 
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(a d×b matrix) with columns of the first b eigenvectors, assuming an order of λ1≥ λ2≥ …≥ λd.  

The information loss is incurred by projecting x onto the subspace spanned by b eigenvectors is minimal in the residual mean square error (r.m.s.e) sense

Equation 4‑25
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Thus our original data matrix X is replaced by
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. Restricting coefficients improves prediction accuracy by removing noise from the data. Additionally if the number of d predictors is large, it may be necessary to find those that exhibit stronger effects than others, this increases interpretability.  There are many ways to calculate M here MATLAB function ‘eig(X)’ can be employed to retrieve M and Λ from
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4.2.4 Principal component regression (PCR)
PCR takes Y=XB and replaces X with 
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Equation 4‑26
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Now, the matrix Xnew is of size n×b, so B contains b<d coefficients. Problems of least squares regression occurs when the columns of X are not independent but collinear. In such cases models are sensitive to noise and cause a loss of full rank. PCR and PLS avoid the collinearity because the eigenvectors are constrained to be orthogonal. In particular PCR solves the mth principal component direction 
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Equation 4‑27 
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The conditions 
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ensure the new direction is perpendicular (uncorrelated) with all previous ones.
4.2.5 Partial least squares (PLS)
Partial least squares seek directions that have high variance and high correlation with the response, whereas PCR can be seen to maximise the variance of
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 (Equation 4‑27).  PLS uses both X and Y matrices when calculating the mth direction
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Equation 4‑28
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Application to Mass Spectral Measurements

4.2.6 Signal and Pressure Relationships in Mass Spectrometry

The standard regression methods (or calibration methods) that are employed in chemical analysis have been introduced.  This section takes these methods and applies them to mass spectral data to obtain the regression coefficients.  Prior to this, Malinowski’s approach to mass spectrometry signal relationships is presented.  [5, 6]

A mass spectrum maybe regarded as the sum of each pure component spectra: Gas composition in the vacuum chamber can vary from the composition of the sample being measured and this difference is considered.  Hi,α is the height of the ith peak in the mass spectrum of mixture α, pj,α is the partial pressure of j in the ionisation chamber (not the sample reservoir).
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 is the height of the ith peak of the pure jth component per unit pressure, ° indicates the pure component, obtained from the mass spectrum of the jth pure component.)

Equation 4‑29
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is the height of the ith peak in the mass spectrum of the pure component j, 
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 is the partial pressure of the jth pure component in the ionisation chamber during measurement (Equation 4‑30).
Equation 4‑30
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The partial pressure of the jth component in the vacuum chamber is proportional to the mole fraction Xj,α in the original sample mixture.  The mass discrimination term Dj of a molecular leak can also be introduced and Pα is the total pressure in the ionisation chamber.
Equation 4‑31
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Equation 4‑32
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In Malinowski’s approach, consideration is given to mass dependence between the sample reservoir and the vacuum system; but no consideration is given to mass discrimination within the analyser, ionisation probability (cross-section and ionisation energy).  It would be possible to expand the discrimination term to include all these factors.  To obtain quantitative information the ratio of pressures and the discrimination factors needs to be considered.

4.2.7 Redefining the Regression Problem

The aim is to be able to record a mass spectrum and infer from this the concentrations of the component gases present.  To obtain mass spectrometer regression coefficients that allow concentrations of gases to be inferred, the methods from the previous section are applied to training or calibration data. The training sets consist of recorded spectra of gas mixtures with known composition; these are obtained at the point of calibration. 
From now on X matrices are displayed as A (in previous work, these regression methods were applied to UV spectroscopy absorbance data), Y contains the concentrations of gases and is now labeled C.
The mass discrimination terms mentioned in the previous section (4.6.1) will be incorporated into the regression coefficients. The intensity of mass signals increase with concentration/pressure our regression problem is now:
Equation 4‑33
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The letters indicating the regression coefficients are also altered to distinguish the methods by which they are obtained. K and P are used for least square methods, B for PLS.  Each method here may use a rearrangement of this formula and will be shown in each figure. 
The difference between the calibration (using training data to obtain the regression coefficients) and the prediction (use of the regression coefficients to predict concentrations) can be clearly seen in Figure 4‑1.

Following Figure 4‑1, the least squares algorithms is presented.  Singular value decomposition (SVD) is introduced as it is a powerful method to obtain the eigenvectors of the spectral matrix A and therefore is used in the factor based methods.  Its use in least squares determinations is also presented.
4.2.8 Classical and Inverse Least Squares 
Here least squares methods to obtain the regression coefficients for a mass spectrometer are shown.  Ordinary least squares (OLS) not shown here but is the same algorithm as classical least squares (CLS).  The name simply clarifies that only pure gas components are used in the calibration to obtain OLS regression coefficients, thus distinguishing differences in experimental design.  The pseudoinverse notation has been omitted for clarity (Equation 4‑4).  A diagrammatic representation of the calculation of the classical least squares regression coefficients can be found in Appendix A.
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Figure 4‑1
Least squares calibration methods

 (Adapted from Kramer Chemometric techniques for quantitative analysis Marcel Dekker, Inc. 1998)
4.2.9 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) gives 

Equation 4‑34


X=USVT


Where S is a diagonal matrix whose elements are the square roots of the eigenvalues.  Each column of U is an abstract orthonormal eigenvector spanning the row space and V is an orthonormal eigenvector that spans the column space.
SVD can be used to calculate the inverse of a matrix, the Matlab pinv(X) function utilises this method.  Following SVD of the X matrix as in Equation 4‑34 the pseudo inverse is calculated by
Equation 4‑35

X+ = pinv(X)=V.diag(1/S).UT
Where pinv() and diag() are matlab functions.  Given that SVD can be applied to find the pseudo inverse of A and C matrices thus it is useful in implementing least squares regressions.  [
] To find Cunknown from a spectrum of unknown composition Aunk which minimises the error matrix E such that
Equation 4‑36



[image: image60.wmf]unk

A

AC

E

-

º


SVD of A gives

Equation 4‑37
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Cunknown which minimises the errors is given by,   

Equation 4‑38


Cunknown=V.diag(1/S).UTAmeasured = A+Ameasured
Equivalence to the ILS calibration (Figure 4‑1) can be seen which calculates the P matrix of regression coefficients are shown here for clarity (Equation 4‑39 and Equation 4‑40).  If C contains only pure components (gases present at 100%) then it is a diagonal matrix containing only values of 100% on the diagonal and will only scale values of P accordingly.

Equation 4‑39
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Equation 4‑40


Cunknown = PAmeasured
4.2.10 Partial Least Squares algorithms

Malinowski’s terminology is adopted to describe PLS in Figure 4‑2 [6] a simplified notation using s to represent the factors as scores (eigenvectors) and loadings (eigenvalues) represented as la and lc respectively.
PLS fundamentals are best described by working through the algorithm for PLS2 (Figure 4‑2).  As before, the calibration stage is used to calculate the regression factors denoted here by B.  
Iterative methods deflate both x and y matrixes having found the first factors and prior to extracting the second.  It has been shown that deflation of only one of these is needed.  [
] As a result such algorithms can be much faster than the iterative routines and have been employed due to the large data sets.
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Figure 4‑2 Calculated regression factors for PLS using NIPALS method for extraction of factors.

Hybrid Linear Analysis (HLA)

HLA only determines the concentration of one component.  This pure component spectrum must be available at the point of calibration.  This component spectrum’s contribution is subtracted from the rest of the calibration samples in A.  The factor reduction steps can be carried out on the data remaining in A.
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Figure 4‑3 Steps in preparing a HLA calibration

V from SVD is a square matrix equivalent in size to the number of m/z data points.  Thus calculated V and then VTV can require considerable computation.  In the algorithm, a defined number of eigenvectors are calculated and as a result, V is no longer square and VVT is used.  r is orthogonal to V and cannot be modelled by the spectra contained in V.  The principle of HLA is that the h obtained is then orthogonal to all spectra in V or background spectra.  The pure component is determined correctly as

Equation 4‑41 

a.h =1 

Equation 4‑42  
 (a+x).h =1+ 0
Adding a component x does not affect the determination.  Hybrid linear analysis is a relatively new calibration procedure, reported to have better prediction results than PLS.  [
]

Assessment of Error in Calibration Models 
Assessing the error in concentration following determination of the regression coefficients is required to evaluate the accuracy of a regression method.  This is necessary in deciding whether a model is sufficient in determining concentrations within a system. 
Additionally for factor-based methods error assessment is required to determine the optimum number of factors to retain and reject.  Assessment of the model can be done within the calibration data set, using the model to predict concentrations of calibration samples (cross-validation) or on independent test sets (target testing).  The root mean squared error of prediction RMSEP can be used to evaluate each model error in predicting an independent test set.  

Equation 4‑43
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is the predicted concentration value and 
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the true concentration in the ith mixture.  Here n is the number of samples.  For factor based methods the number of factors retained will alter the prediction values.  To decide the number of factors to include, one spectrum and its corresponding concentrations are removed from A and C calibration matrices, a calibration model is built on the remaining data.  The determined regression coefficients are then used to estimate the composition of the removed spectrum.  The errors can be calculated.  The process is repeated until each spectrum has been left out once and the resultant errors following each calibration summed.  This can be repeated for all numbers of factors, the number of factors that results in the lowest error is then selected.  This is referred to as the root mean squared error of calibration (RMSEC) to distinguish the results from prediction errors which an independent test set is used (RMSEP).  For RMSEC, consideration of the degrees of freedom is required, if the RMSEC value is to be compared to other RMSEC values.  If the number of samples/spectra (n) is large, then the degrees of freedom can largely be ignored.  Here f is the number of factors retained in factor based methods.
Equation 4‑44


degrees of freedom =n-f-1 

Selection of the number of factors will be by cross-validation and Malinowski’s significant factor MATLAB function (sfa.m) [6] is used to determine the number of significant factors, where there is a contradiction the number of factors that results in the lowest cross validation error will be used.  

4.3 Mass Spectral Mixtures for Model Evaluation

The following mixtures of gases are used to evaluate the chemometric regression methods are introduced.  Most of the components were available as pure gas samples.  Gas mixtures were obtained and certified from BOC unless otherwise stated.  Pure components were obtained from Sigma-Aldrich.  Measurement and sampling methods were described in Chapter 3.

4.3.1 Propane in CO2, CO and N2 (Standard mixture 2)
	Gas
	Manufacturers stated % concentration

	Carbon Monoxide
	3.485

	Carbon Dioxide
	13.94

	Propane
	0.195

	Nitrogen
	82.38


Table 4‑1
Composition of Standard mixture 2
The mixture shown in Table 4‑1 (the second standard mixture measured in Chapter 3) was chosen as it poses a particular measurement problem in mass spectrometry as all components have a mass 28 contributions and quantifying the components using this peak is not possible using a univariate method. 

4.3.2 Hydrocarbon Mixture C1-C6
	Gas
	Manufacturers stated

% Concentration

Natural Gas Mixture 1
	NPL determined

% Concentration

Natural Gas Mixture 2

	Nitrogen
	0.01
	0.933

	Methane
	10
	91.733

	Carbon Dioxide
	
	1.311

	Ethane
	20
	4.479

	Propane
	0.5
	1.089

	i-Butane
	0.5
	0.126

	n-Butane
	0.5
	0.201

	neo-Pentane
	-
	0.0022

	i-pentane
	-
	0.0404

	n-pentane
	-
	0.0385

	Hexane
	-
	0.0083

	Benzene
	-
	0.0124

	Cyclohexane
	-
	0.0050

	n-Heptane
	-
	0.0021

	Me-CycloHexane
	-
	0.0023

	Toluene
	-
	0.0019

	Ethene
	35
	-

	Trans-but-2ene
	0.5
	-

	Cis-But-2-ene
	0.5
	-

	Methyl-acetylene
	0.5
	-

	Ethyne
	0.5
	-

	Propene
	1
	-

	1,3-Butadiene
	1.5
	

	Hydrogen
	28.99
	-


Table 4‑2 Composition of natural gas mixtures 1 and 2

Mixture 1 in Table 4‑2 is a standard used for an industrial process in the monitoring of ethane to ethene ratios.  Currently quantifying the gases are performed using gas chromatography which has the disadvantage of a longer analysis time.  The industrial process contains many larger hydrocarbons, which fragment to give overlapping components in the ethane and ethene mass regions, therefore univariate calibrations cannot be used.  A multivariate technique may enable mass spectrometry to monitor this industrial process.  

Mixture 2 is a natural gas sample provided and calibrated by the National Physics Laboratory and was used here to provide an additional complex measurement sample.

4.3.3 A Three-Component Hydrocarbon System
The pure gases ethane, ethene and methane were mixed using three mass flow controllers eleven mixtures of differing composition were measured to characterise the instrument response over a 0-100% range.  The pure component spectra are also recorded.
	% Ethane
	% Ethene
	% Methane

	50
	50
	0

	50
	0
	50

	70
	15
	15

	15
	70
	15

	15
	15
	70

	100
	0
	0

	100
	0
	0

	0
	0
	100

	33
	33
	33

	24
	45
	31

	0
	100
	0


Table 4‑3 Composition of ethane, ethene and methane set by mass flow controllers

Regression Results on Experimental Data.

In this section, the results corresponding to standard mixture used in chapter 3 (and in Table 4‑1), the natural gas mixtures (Table 4‑2) are presented for the regression methods.  OLS calibrations are performed; the resultant regression coefficient matrix is generated, then used to determine the individual component concentrations of the mixtures.  The performance of the calibration can be assessed by comparison of the determined value to the certified values.
4.3.4 Least Square Determinations of Standard Mixture 2
	OLS determinations of Propane in CO2, CO and N2

	Gas
	Manufacturers stated 

% Concentration
	Day 1
	Day 18

	
	
	Raw Data
	Normalised
	Raw Data
	Normalised

	Nitrogen
	82.4
	82.0
	78.0
	87.1
	83.8

	Carbon Dioxide
	13.9
	13.5
	16.8
	11.9
	14.8

	Carbon Monoxide
	3.5
	4.4
	4.7
	0.9
	1.0

	Propane
	0.2
	0.1
	0.5
	0.1
	0.4


Table 4‑4  OLS Concentration determinations of standard mixture 2 

OLS results are shown using two approaches, firstly to carry out the calibrations without pre-processing and secondly to normalise the data to total peak area (total ion current).
Raw data determination directly following the calibration on day 1 gives the best performance, but normalising the data adversely affects the results.  Eighteen days later, the performance of the calibration is worse with or without normalising.  Normalising is shown to improve the determination when significant time has passed since calibration relative to the raw data with no pre-processing.

Calibration requirements are important in determining whether the calibration model is successful.  If a concentration error of +/- 5% is acceptable then the calibration results in Table 4‑4 are successful.  If a ppm level calibration is required then the calibration is unsuccessful.  This is shown by propane which is present at a level of 0.2% and is not accurately fitted at any point.  The estimated propane concentration values range from 0.1 to 0.5%.  There is considerable variation in the carbon monoxide results which range from 0.9-4.4% when the prescribed concentration is 3.5%.

As there is only one test mixture, there is no indication of how the calibration model may perform in other concentration regions.  The model may predict values of nitrogen worse at low level concentrations that at high levels of nitrogen.   

Background or base pressure constituents have been regarded as constant, however the background may vary in terms of magnitude (pressure) and composition, because of this accurate background subtraction is difficult.  The sampling pressures here were 4x10-6 torr (Day 1) and 3x10-6 torr (Day 18).  Pressure gauges are generally not very accurate (PKR 251 accuracy +/-30%) and could not be used to correct the spectra.  If base-pressure is 1x10-7 torr and sampling is at 1x10-5torr then the background will only constitute 1% of the resulting spectrum.  With the experimental set described above the base pressure is closer to 10% of the resultant spectra, changes in this background level would therefore contribute to the error levels. 

Natural Gas Analysis (Mixture 1)
The composition of Natural gas mixture 1 in Table 4‑2, is a standard that is used in an industrial process to determine ethane and ethene ratios.  Alkane and Alkene ratios are produced in cracking processes where longer chain hydrocarbons are split in to smaller ones.  Ethane can also be produced from hydrogenation of ethene using a nickel catalyst.  In addition, ethene can be produced from ethane by cracking.

Equation 4‑45
 C2H6 → H2C=CH2 + H2

The natural gas standard was recorded periodically over the course of a 1-week field trial.  Pure component gases were recorded on separate occasions as deterioration in the calibration efficiency was expected.  Certified mixtures with this many components are expensive and some pure gases were not readily available so minor constituents contributing to 2.5% of the mixture were unaccounted for.  All components present and their concentrations can be found in Table 4‑2.  As a result of the missing components the accuracy was limited.  This single mixture still provides an insight to the performance and requirements of a calibration model.

With a small number of components overall performance of the model can be evaluated visually.  Increasing numbers of components make this difficult, so the RMSEP value provides an overall measure of performance but does not give an insight to how the calibration performance varies, with concentration or for each of the constituent compounds.  Table 4‑5 shows twelve OLS determinations of the natural gas components where the standard mixture was recorded a number of times throughout the weeklong field trial.  The calibration was not performed on site.  The vacuum system was vented to atmosphere between calibration and the field trial.

Measurement 1 gave the best results with a RMSEP value of 3.41 and all compounds except ethene are predicted to within +/-5% of the true concentration values.  Negative gas concentrations are visible as no non-negative constraints have been imposed on the system.  The RMSEP value increases through to measurement 9.  The determination of ethane and ethene from measurement 4 through to measurement 10 shows large errors.  In measurement 9 the OLS determination of ethane is 61.53% compared to certified standard value of 20%.  Measurements 11 and 12 the RMSEP value is reduced and the determinations have improved accuracy.  The results are initially promising for a +/- 5% determination.  Water vapour is present within vacuum systems and is subject to operational changes.  Water was not accounted for in the calibration which may result in errors in the concentration determinations.

	
	
	Measurement Number

	
	Manufacturers stated

% Concentration
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Hydrogen
	29.0
	33.84
	34.79
	34.04
	36.88
	35.95
	33.67
	25.89
	22.25
	19.68
	34.72
	28.13
	26.01

	Ethane
	20.0
	21.24
	22.49
	22.90
	36.04
	37.19
	39.21
	55.73
	54.92
	61.53
	34.88
	24.24
	25.22

	Ethene
	35.0
	27.71
	25.47
	25.71
	15.99
	15.53
	15.85
	13.27
	17.24
	14.07
	17.66
	26.83
	26.22

	Methane
	10.0
	14.16
	15.11
	15.25
	11.62
	12.02
	12.31
	7.60
	7.82
	7.96
	12.37
	14.66
	16.53

	1,3 but
	1.5
	1.16
	0.60
	0.59
	0.40
	0.34
	0.35
	-0.06
	-0.08
	-0.16
	0.51
	1.97
	1.81

	propene
	0.5
	0.59
	0.31
	0.33
	1.29
	1.31
	1.81
	2.93
	3.00
	3.29
	1.41
	2.19
	2.23

	i-butane
	0.5
	1.91
	1.25
	1.17
	-2.04
	-2.26
	-3.44
	-5.95
	-5.93
	-7.04
	-1.92
	0.65
	0.60

	n-butane
	0.5
	-2.03
	-1.20
	-1.11
	2.93
	3.20
	4.44
	7.64
	7.53
	8.97
	2.73
	0.74
	0.77

	propane
	0.5
	1.40
	1.18
	1.11
	-3.11
	-3.28
	-4.20
	-7.05
	-6.76
	-8.30
	-2.35
	0.58
	0.61

	RMSEP
	
	3.41
	4.23
	4.11
	8.89
	9.18
	9.54
	14.61
	13.89
	16.57
	8.04
	3.50
	4.20


Table 4‑5
Twelve determinations of a natural gas standard taken over the course of a week using OLS calibration.

4.3.5 Natural Gas Analysis (Mixture 2)
The natural gas mixture 2 is used to provide additional insight to OLS performance and a preliminary investigation into PLS and PCR and calibration performances over time.  Strictly speaking for PLS and PCR the calibration should be experimentally designed; many end-users would like the simplicity of pure component calibration.  As only pure components are used in the calibration, CLS is not considered here.  The OLS is also determined by singular value decomposition shown in Equation 4‑38 and also as shown in the procedure in Figure 4‑1.  Individual component determinations are first shown (Table 4‑6 and Table 4‑7) all methods produced identical results to a ppm level (10-4%).
	Gas
	Certified %

Concentration
	OLS
	PLS
	PCR
	OLS (SVD)

	Carbon Dioxide
	1.3110
	1.6449
	1.6449
	1.6449
	1.6449

	Methane
	91.7330
	92.7380
	92.7380
	92.7380
	92.7380

	Ethane
	4.4790
	3.0122
	3.0122
	3.0122
	3.0122

	i-butane
	0.1260
	0.2253
	0.2253
	0.2253
	0.2253

	Nitrogen
	0.9330
	1.6548
	1.6548
	1.6548
	1.6548

	n-butane
	0.2010
	0.0391
	0.0391
	0.0391
	0.0391

	Propane
	1.0890
	0.6858
	0.6858
	0.6858
	0.6858


Table 4‑6
Results for pure-component calibration of a natural gas mixture.

	Gas
	Certified %

Concentration
	OLS
	PLS
	PCR
	OLS (SVD)

	Carbon Dioxide
	1.3110
	1.5861
	1.5861
	1.5861
	1.5861

	Methane
	91.7330
	91.6873
	91.6873
	91.6873
	91.6873

	Ethane
	4.4790
	3.6890
	3.6890
	3.6890
	3.6890

	i-butane
	0.1260
	0.2037
	0.2037
	0.2037
	0.2037

	Nitrogen
	0.9330
	2.0739
	2.0739
	2.0739
	2.0739

	n-butane
	0.2010
	0.0806
	0.0806
	0.0806
	0.0806

	Propane
	1.0890
	0.6794
	0.6794
	0.6794
	0.6794


Table 4‑7
Results when spectra are averaged in calibration and determinations.

Here not all pure components were available and 0.128% of the mixture was unaccounted for in the calibration.  The unknown spectrum Aunknown was recorded the same day as the pure calibration gases.  

Changes of spectra response to the natural gas standard were monitored for a 148-day period showing the ability of the calibration to estimate concentrations changes with time.  The results here are expressed as RMSEP values (Table 4‑8-to Table 4‑11) due to the large volumes of information.  Large amounts of information are used to obtain the results in Table 4‑9 alone, because of the spectra averaging, forty spectra were required in each single determination and each of these spectra has 4800 data points.

Table 4‑8 shows results for determination of a single independent test set (the natural gas mixture 2) over a five-month period.  No differences were produced between any of the calibration routines and the values in Table 4‑8-to Table 4‑11 are the same.  Concentration determinations on day 148 show an improvement on determinations that had been getting worse over the five-month period.

Pre-processing steps that may improve the calibration determinations are considered, for example averaging a number of pure component spectra.  Table 4‑7 shows an improvement in component concentration determinations, when a number of identical calibration spectra are recorded then averaged.  The sample mixture to be determined is then also averaged in the same manner.  This method helps reduce noise levels and reduce the effects of spurious results.  Table 4‑9 shows results when spectra are averaged before performing the calibration and on the sample spectrum before determination of the concentration over the 148 day period.  This method again showed an improvement in all except the last determination. 

It was also noted that the mass attributed to hydrogen (m/z 2) show considerable variation and it is considered whether reducing the data matrices to exclude the mass range (0-5 m/z) improves the calibrations.  Removing the first 250data points in each spectrum, then performing the calibration and determinations gave the results shown in Table 4‑10.  This improved some calibrations and not others. 
Finally, Table 4‑11 shows results when the data are normalised to total ion current.  Again, some improvements were shown in some of the determinations but not consistent improvement.  These results provide a further basis for not normalising the data in this fashion, as it does not compensate for pressure variations as intended.  
In addition to 0.128% of the calibration mixture being unaccounted for the certification levels of the pure gases used did vary from 98% to 99.998%.  If a ppm level calibration is required, the quality of the standards needs to be improved or corrected.  Other sources of errors will occur from changes in operating pressure and temperatures, e.g. sampling from a gas flow vented to atmosphere to prevent build up of sampling pressures.

	Days lapsed
	OLS
	PLS
	PCR
	OLS

	0
	0.7552
	0.7552
	0.7552
	0.7552

	14
	0.7781    
	0.7781    
	0.7781    
	0.7781    

	67
	1.1697    
	1.1697    
	1.1697    
	1.1697    

	70
	1.2776    
	1.2776    
	1.2776    
	1.2776    

	99
	1.9635    
	1.9635    
	1.9635    
	1.9635    

	148
	1.3336    
	1.3336    
	1.3336    
	1.3336    


Table 4‑8 Time variation in RMSEP (Natural gas mixture 2)

	Days lapsed
	CLS
	PLS
	PCR
	OLS

	0
	0.5596
	0.5596
	0.5596
	0.5596

	14
	0.4366
	0.4366
	0.4366
	0.4366

	67
	0.6001
	0.6001
	0.6001
	0.6001

	70
	0.9716
	0.9716
	0.9716
	0.9716

	99
	1.4363
	1.4363
	1.4363
	1.4363

	148
	1.4033
	1.4033
	1.4033
	1.4033


Table 4‑9 Time variation in RMSEP averaged calibration and determination spectra.  (Natural gas mixture 2)

	Days lapsed
	CLS
	PLS
	PCR
	OLS

	0
	0.4411
	0.4411
	0.4411
	0.4411

	14
	0.6277
	0.6277
	0.6277
	0.6277

	67
	0.4645
	0.4645
	0.4645
	0.4645

	70
	0.9313
	0.9313
	0.9313
	0.9313

	99
	1.8285
	1.8285
	1.8285
	1.8285

	148
	0.5064
	0.5064
	0.5064
	0.5064


Table 4‑10 Time variation in RMSEP –spectra with first 250 data-points removed (Natural gas mixture 2)

	Days lapsed
	CLS
	PLS
	PCR
	OLS

	0
	0.3813
	0.3813
	0.3813
	0.3813

	14
	0.7956
	0.7956
	0.7956
	0.7956

	67
	1.3351
	1.3351
	1.3351
	1.3351

	70
	0.6036
	0.6036
	0.6036
	0.6036

	99
	1.0910
	1.0910
	1.0910
	1.0910

	148
	2.3933
	2.3933
	2.3933
	2.3933


Table 4‑11
Time variation in RMSEP values on averaged and normalised data. (Natural gas mixture 2)

4.3.6 Ethane Ethene and Methane Calibrations 

Table 4‑3 shows the gas ratios for a three-component mixture consisting of Ethane, Ethene and methane.  For mass spectrometry, this is a measurement problem, as they are light hydrocarbons with few peaks and fragments.  The calibration spans the concentration ranges from 0-100% and is intended to characterise the instrument over a range of concentration values.

Whereas previously the PLS and PCR methods were performed using pure components only, it was noted that the performance of the models were indistinguishable.  The HLA method is not suitable for pure component calibration but now can be considered here.  These results are shown in Table 4‑12 to Table 4‑14.  The RMSEP value is expressed as RMSEC to highlight that these are errors within the calibration set. The errors of calibration were so high the validation by an independent test set was not considered.

Selection of the number of factors to retain is a critical process for the factor based methods and will determine the final performance of the calibration.  From this cross-validation the desired number is three factors for PCA and PLS and two factors for HLA.  If the choice is unclear, the eigenvalues following SVD that are below a set threshold can be removed. Malinowski’s significant factor MATLAB routine (sfa.m) [6] indicates the retention of 7 factors contradicting the cross-validation and can have a tendency to overestimate the correct number of factors. 

In Table 4‑12 to Table 4‑14 it is evident that there is something incorrect with the calibration.  This is likely to be attributed to errors in experimental set-up or the control of the flow of the gases.  Table 4‑15 gives the errors for a PLS determination.  For each of the components in each of the determinations, large and negative errors are visible.
	CROSS-VALIDATION single spectra

	Factors

Retained
	CLS
	PLS
	PCR
	OLS
	HLA

	1
	37.542
	24.973
	112.71
	21.274
	197.42

	2
	
	28.676
	153.119
	
	197.78

	3
	
	24.91
	29.8178
	
	335.19

	4
	
	57.555
	29.67
	
	394.65

	5
	
	100.22
	37.27
	
	125.57

	6
	
	108.23
	37.65
	
	386.01

	7
	
	108.66
	37.60
	
	1004.8

	8
	
	98.74
	37.55
	
	602.56

	9
	
	98.414
	37.55
	
	5841.7

	10
	
	98.34
	37.54
	
	1155.4


Table 4‑12 Determination of RMSEC values when retaining 1-10 factors. 

	CROSS-VALIDATION averaged spectra

	Factors

Retained
	CLS
	PLS
	PCR
	OLS
	HLA

	1
	45.322
	36.405
	45.544
	48.904
	442.29

	2
	
	36.616
	52.878
	
	208.92

	3
	
	33.839
	   36.2426
	
	219.3

	4
	
	49.224
	   44.8844
	
	265.14

	5
	
	50.352
	   45.3676
	
	224.98

	6
	
	78.29
	   45.3451
	
	1957.5

	7
	
	180
	   45.3070
	
	1180.4

	8
	
	175.48
	45.3226
	
	565

	9
	
	168.09
	   45.3220
	
	2032.3

	10
	
	158.08
	   45.3226       
	
	138.81


Table 4‑13 Determination of RMSEC values when retaining 1-10 factors. 

	CROSS-VALIDATION without first 250 data points

	Factors

retained
	CLS
	PLS
	PCR
	OLS
	HLA

	1
	46.438
	36.755
	171.3576
	27.35
	284.15

	2
	
	28.478
	35.4002
	
	232.35

	3
	
	36.95
	36.8482
	
	221.93

	4
	
	44.847
	46.5535
	
	121.6

	5
	
	51.219
	46.5489
	
	623.87

	6
	
	92.342
	46.4115
	
	449.37

	7
	
	97.755
	46.4409
	
	350.08

	8
	
	95.696
	46.4369
	
	1472.1

	9
	
	92.233
	46.4380
	
	3528.9

	10
	
	91.826
	46.4374
	
	68.105


Table 4‑14 Determination of RMSEC values when retaining 1-10 factors. 

	Ethane
	Ethene
	Methane

	5.9101
	-28.144
	13.742

	44.027
	-28.359
	-20.278

	-8.1523
	23.821
	-16.323

	-1.0638
	11.568
	-10.397

	19.093
	-27.662
	9.9048

	-0.054109
	7.7322
	-6.5265

	-47.838
	27.134
	22.145

	10.076
	26.594
	-35.101

	-2.2217
	-9.6999
	14.737

	4.0546
	-21.244
	19.214

	-87.881
	141.95
	-41.989


Table 4‑15 Individual concentration errors in PLS calibration for pure component mixture

Summary
It is suspected that the calibration errors are arising from differences in gas flows of the standard gases.  It is difficult to get a true idea of how the models are fitting and which method gives the best performance when there are many sources of experimental error.  Errors can arise from many other sources and may not be wholly attributed to the gas flows.  The different gases may have different pumping efficiencies resulting in changes of operating pressure and base-pressure composition.  Chemical effects, purging times can all contribute.  There could also be a non-linearity in the response of the gases in the instrument.  These calibration methods reply on the response of the instrument being linear.
Assessing calibration methods in an experimental fashion is difficult and it can be problematic in identifying the source of these errors, there are always process improvements and optimisation possibilities during calibration.  Purer gases, flow controllers with lower error margins, heated capillary lines, and increased purging times.  
For a more thorough investigation, it is necessary to perform an assessment using simulated data, whereby the errors and spectral features can be controlled and introduced in varying degrees.  Following such assessment it is then possible to choose a calibration method suitable for the measurement in question.  It is proposed that it is necessary to have a method of producing simulated data for any mixture of residual gases that can also incorporate experimental and instrumental effects into the final data and could also be used to assess the calibration requirements. 
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